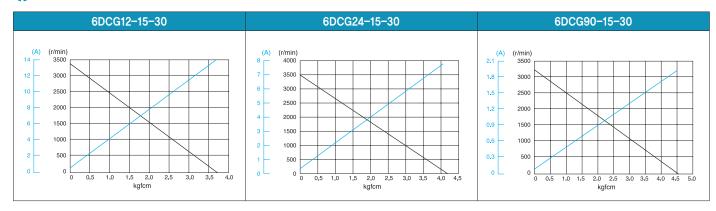


DC Motor 15W(□60mm)


15W DC Motor 15W(□60mm)

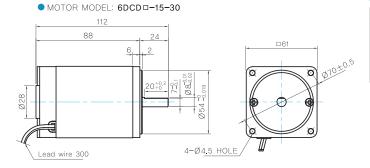
Motor 사양

Model	Output	Voltage	No L	oad.	Starting	Torque	Starting	Rated Load				
6DCG*-15-30: Gear Type Shaft 6DCD*-15-30: D-Cut Type Shaft	w	V	Speed r/min	Current A	kgfcm			Speed r/min	Current A	Torque kgfcm N.m		
6DC□12-15-30	15	12	3200	1.00	4.20	0.420	13.00	3000	1.90	0.49	0.049	
6DC□24-15-30	15	24	3500	0.40	4.20	0.420	7.50	3000	1.10	0.49	0.049	
6DC□90-15-30	15	90	3150	0.10	4.80	0.480	2.60	3000	0.25	0.49	0.049	

- 1) 모터 모델명 * 자리에는 전압코드가, ㅁ 안에는 부착되는 감속기 모델 타입명이 들어갑니다.
- 2) Gear Type Shaft는 감속기 부착용이며 D-Cut Type Shaft는 모터 단독 사용시의 출력축 입니다.

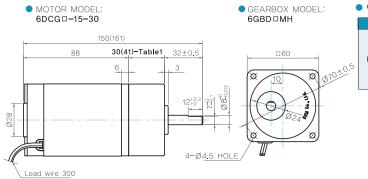
(iii) Performance Curve

◉ 감속기 부착 시 최대허용토크


Motor	Gearbox	감속비	3	3.6	5	6	7.5	9	10	12.5	15	18	20	25	30	36	40	50	60	75	90	100	120	150	180	200	250
Model	Model	r/min	1000	833	600	500	400	333	300	240	200	167	150	120	100	83	75	60	50	40	33	30	25	20	17	15	12
6DCG*-	6GBD□	kgfcm	1.2	1.4	2.0	2.4	3.0	3.6	4.0	5.0	6.0	7.1	7.2	8.9	10.7	12.9	14.3	16.2	19.4	24.3	29.1	30.0	30.0	30.0	30.0	30.0	30.0
15-30	MH	N.m	0.12	0.14	0.19	0.23	0.29	0.35	0.39	0.49	0.58	0.70	0.70	0.88	1.05	1.26	1.40	1.58	1.90	2.38	2.85	2.94	2.94	2.94	2.94	2.94	2.94

- 1) 모터 모델명 * 자리에는 전압코드가 들어갑니다.
- 2) 감속기 모델명 \square 안에는 감속비가 들어갑니다.
- 3) 위의 표에서 색칠된 범위의 감속비를 선택했을 때 감속기의 출력축은 모터의 출력축과 같은 방향으로 회전합니다. 흰색 바탕 범위의 감속비에서는 감속기 출력축은 모터 출력축의 회전방향과 반대방향으로 회전합니다.
- 4) 회전속도(r/min)는 모터의 동기회전속도(50Hz:1500r/min, 60Hz:1800r/min)를 감속비로 나누어 계산합니다. 실제 회전속도는 부하의 크기에 따라 표시보다 2~20% 정도 느립니다.

Dimensions



MOTOR OUTPUT SHAFT

MODEL	SPEC
D-CUT TYPE	24 20+02 10008 10008 10008 10008 10008

GEARED MOTOR

G TYPE GEARBOX

GEARBOX OUTPUT SHAFT

	MODEL	SPEC
D-0	CUT TYPE	32 12+0.2 12+0.2 10-0.7

WEIGHT

	PART	WEIGHT(Kg)
	MOTOR	0.7
	6GBD3MH ~ 6GBD18MH	0.3
GEAR BOX	6GBD20MH ~ 6GBD40MH	0.32
	6GBD50MH ~ 6GBD250MH	0.34

• 30(41)-Table1

SIZE(mm)	GEAR RATIO
30	6GBD3MH - 6GBD18MH
41	6GBD20MH - 6GBD250MH

Motor Images

